Boeing 747 Used to Understand our “Solar System”, WTF?

fe nasa die ge6

HA HA HA, except the huge joke is on us all, we fund this total B.S. job while millions are homeless, don’t have food to eat and are in poor health.

Flying observatory SOFIA expanding frontiers in solar system and beyond

The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint project of NASA and the German Aerospace Center (DLR). It is a Boeing 747SP wide-body aircraft that has been modified to include a large door in the aft fuselage that can be opened in flight to allow a 2.5-metre (100-inch) diameter reflecting telescope access to the sky. This telescope is designed for infrared astronomy observations in the stratosphere at altitudes of about 41,000 feet (12 kilometres). Image credit: NASA / Jim Ross.

The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint project of NASA and the German Aerospace Center (DLR). It is a Boeing 747SP wide-body aircraft that has been modified to include a large door in the aft fuselage that can be opened in flight to allow a 2.5-metre (100-inch) diameter reflecting telescope access to the sky. This telescope is designed for infrared astronomy observations in the stratosphere at altitudes of about 41,000 feet (12 kilometres). Image credit: NASA / Jim Ross.

NASA’s Stratospheric Observatory for Infrared Astronomy, SOFIA, will soon be studying Neptune’s giant moon, Triton, and following-up on Hubble’s recent sighting of water plumes on Jupiter’s moon Europa. According to recently completed plans for the 2017 observing campaign, about half of the research time for SOFIA will run the gamut from studies of planets to observations of comets and asteroids orbiting other stars and supermassive black holes in the centres of galaxies beyond our own. The other half will focus on star formation and the interstellar medium, the areas of dust and gas in the universe, including a vast turbulent region encircling the centre of our Milky Way galaxy.

A total of 535 observing hours have been awarded for SOFIA’s Science Cycle 5, which runs from February 2017 through January 2018, and the selected programs span the entire field of astronomy from planetary science to extragalactic investigations. Triton, only one-third of a light-year from Earth, will be one of the closest objects studied by NASA’s flying observatory while the farthest observation will study a supermassive black hole approximately 12 billion light-years away.

SOFIA is a is a joint program between NASA and the German Aerospace Center and is a Boeing 747SP jetliner modified to carry a 100-inch diameter telescope that uses eight instruments to study the universe at infrared wavelengths that cannot be detected from ground-based observatories. Cycle 5 provides 455 research hours to U.S. programs and 80 hours to German programs.

 

Figure 1a: SOFIA/FORCAST mid-infrared image of the Milky Way Galaxy's nucleus showing the Circumnuclear Ring of gas and dust clouds orbiting a central supermassive black hole. Image credit: NASA/DLR/USRA/DSI/FORCAST Team/Lau et al. 2013.

Figure 1a: SOFIA/FORCAST mid-infrared image of the Milky Way Galaxy’s nucleus showing the Circumnuclear Ring of gas and dust clouds orbiting a central supermassive black hole. Image credit: NASA/DLR/USRA/DSI/FORCAST Team/Lau et al. 2013.

“Four very highly rated programs were selected to investigate the galactic centre region using the upGREAT high-resolution far-infrared spectrometer,” said Harold Yorke, SOFIA Science Mission Director of the Universities Space Research Association.

“Three of those programs are aimed at understanding the Central Molecular Zone, a vast, turbulent region encircling the Milky Way’s nucleus that contains a large fraction of the galaxy’s dense molecular clouds and star forming regions, Yorke explained. “The fourth program is focused on material surrounding, and perhaps feeding into, the supermassive black hole at the very heart of our galaxy.”

To study celestial objects that are best viewed from the Southern Hemisphere, planning is underway for an eight-week deployment to Christchurch, New Zealand, from late June to late August 2017, employing three instruments: the spectrometer known as the upgraded German Receiver for Astronomy at Terahertz Frequencies, or upGREAT, The Faint Object infraRed Camera for the SOFIA Telescope, or FORCAST, a combined mid-infrared camera and spectrometer, and the Far Infrared Field-Imaging Line Spectrometer, or FIFI-LS, a far-infrared imaging spectrometer.

Closer to home, the Echelon-Cross-Echelle Spectrograph, or EXES, a mid-infrared spectrometer, will take advantage of that instrument’s great sensitivity and high spectral resolution to make an ambitious search for previously unobserved molecules in the Orion star-forming region, looking for rare molecular species like acetylene, ethylene, and ethane. These observations will provide information about the production of organic compounds and water in a region where stars and planets are currently forming.

Figure 1b: NASA/ESA Hubble Space Telescope/Near Infrared Camera and Multi-Object Spectrometer (NICMOS) near-infrared image showing the same field of view with the same scale and orientation as Figure 1a. At this wavelength, opaque dust in the plane of the Milky Way hides features that are seen in the SOFIA image. Image credit: NASA/HST/STScI/AURA.

Figure 1b: NASA/ESA Hubble Space Telescope/Near Infrared Camera and Multi-Object Spectrometer (NICMOS) near-infrared image showing the same field of view with the same scale and orientation as Figure 1a. At this wavelength, opaque dust in the plane of the Milky Way hides features that are seen in the SOFIA image. Image credit: NASA/HST/STScI/AURA.

SOFIA’s High-resolution Airborne Wideband Camera-plus, known as HAWC+, a far-infrared polarimeter camera, now being commissioned, is slated for a joint project with the most powerful telescope on Earth, the Atacama Large Millimetre/submillimetre Array, ALMA, to understand how the galaxy’s magnetic fields resist the collapse of gas clouds that form stars thereby affecting the star formation process.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: